تقاطع غیر همسطح

برشگاه

فصل مشترک

چهارسو

چهار راه

همبر

تقاطع، برشگاه

اشتراک

فصل مشترك

تقاطع ، چهار راه .تقاطع ، اشتراک .

تقاطع . چهار راه

چهارراه ،چهارسو،فصل مشترک( هندسه)،تقاطع ،چهار راهعلوم مهندسى : فصل مشترکعمران : محل مقاطعمعمارى : همبرعلوم هوايى : اشتراکعلوم نظامى : فصل مشترک

فرهنگ لغات عمومي
تقاطع،قطع،تقسیم،نقطه تقاطع،محل،برشگاه
فرهنگ لغات رايانه
تقاطع
فرهنگ لغات عمران و معماري
متقاطع
فرهنگ لغات مکانيک
تقاطع
فرهنگ لغات مهندسي صنايع
اشتراک، تقاطع، فصل مشترک، مقطع
فرهنگ لغات پزشکي
تقاطه ، برشگاه
فرهنگ لغات فلسفه
قطع
فرهنگ لغات علوم پايه
اشتراک، مقطع

علوم پایه:
cantor intersection theorem
قضیۀ اشتراک کانتور

a point where lines intersect(n)

Synonyms: intersection intersection point point of intersection

Hyponyms: metacenter metacentre vertex

Hypernyms: point

a junction where one street or road crosses another(n)

Synonyms: carrefour crossing crossroad crossway intersection

Hyponyms: corner grade crossing level crossing street corner turning point

Hypernyms: junction

PartMeronyms: road route

PartMeronyms: road route

PartMeronyms: road route

a point or set of points common to two or more geometric configurations(n)

Synonyms: intersection

Hyponyms: origin

Hypernyms: set

the set of elements common to two or more sets(n)

Synonyms: cartesian product intersection product

Hypernyms: set

Examples: the set of red hats is the intersection of the set of hats and the set of red things

a representation of common ground between theories or phenomena(n)

Synonyms: convergence intersection overlap

Hyponyms: crossroads interface

Hypernyms: internal representation mental representation representation

Examples: there was no overlap between their proposals

the act of intersecting (as joining by causing your path to intersect your target's path)(n)

Synonyms: intersection

Hypernyms: connection connexion joining

In mathematics, the intersection of two or more objects is another object consisting of everything that is contained in all of the objects simultaneously. For example, in Euclidean geometry, when two lines in a plane are not parallel, their intersection is the point at which they meet. More generally, in set theory, the intersection of sets is defined to be the set of elements which belong to all of them. Unlike the Euclidean definition, this does not presume that the objects under consideration lie in a common space.